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Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
2ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia

RR, 0000-0003-2801-5178

Sharks play a key role in the structure of marine food webs, but are facing

major threats due to overfishing and habitat degradation. Although sharks

are also assumed to be at relatively high risk from climate change due to a

low intrinsic rate of population growth and slow rates of evolution, ocean

acidification (OA) has not, until recently, been considered a direct threat.

New studies have been evaluating the potential effects of end-of-century elev-

ated CO2 levels on sharks and their relatives’ early development, physiology

and behaviour. Here, we review those findings and use a meta-analysis

approach to quantify the overall direction and magnitude of biological

responses to OA in the species of sharks that have been investigated to

date. While embryo survival and development time are mostly unaffected

by elevated CO2, there are clear effects on body condition, growth, aerobic

potential and behaviour (e.g. lateralization, hunting and prey detection).

Furthermore, studies to date suggest that the effects of OA could be as sub-

stantial as those due to warming in some species. A major limitation is that

all past studies have involved relatively sedentary, benthic sharks that are

capable of buccal ventilation—no studies have investigated pelagic sharks

that depend on ram ventilation. Future research should focus on species

with different life strategies (e.g. pelagic, ram ventilators), climate zones

(e.g. polar regions), habitats (e.g. open ocean), and distinct phases of ontogeny

in order to fully predict how OA and climate change will impact higher-order

predators and therefore marine ecosystem dynamics.
1. Introduction
Chondrichthyan fishes (sharks, skates, rays and chimaeras) are one of the most

successful marine groups, having been able to survive all five mass extinctions

over the last 400 million years [1]. The first reports of their most reliable diag-

nostic feature—the tesserate mode of cartilage mineralization—are from late

Devonian deposits (approx. 380 Mya) [2], though the first scales and spines

of Chondrichthyans appeared already in the Lower Silurian [3,4]. Presently,

the cartilaginous fishes (comprising approximately 1200 species) are found

throughout all of the world’s oceans, and many occupy high trophic levels in

marine habitats [5,6] where they can exert a fundamental influence (top-down

control) on the structure and function of communities [7,8]. Although chon-

drichthyans have evolved to fill many aquatic habitats and niches, their ability

to adapt quickly to human-induced environmental changes is assumed to be lim-

ited [9–11]. In contrast to most marine fishes, they generally have a K-selected

life-history strategy: slow growth, late age at maturity, low fecundity, and few

offspring, long gestation periods and long lifespans [6]. These life-history traits

have important implications for fisheries’ sustainability, management and

conservation [12–14]. For sharks in particular, it is widely accepted that the

major threats to their populations are overfishing and habitat degradation, but

this group is also at relatively high risk from climate change [15,16].
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2. Ocean acidification
The anthropogenic emissions of greenhouse gases to the

atmosphere are driving rapid changes in the Earth’s climate

system, which are expected to accelerate in the current century.

Atmospheric carbon dioxide (CO2) levels have risen to

400 matm [17] for the first time in at least 800 000 years and

are expected to exceed 900 matm by 2100 if the current emis-

sions trajectory is maintained [18]. The pCO2 of the ocean is

rising as the same rate as the atmosphere [19], and the

uptake of additional CO2 from the atmosphere is causing

ocean pH to decline. Ocean surface pH is projected to decrease

by 0.13–0.42 units by the end of the 21st century, depending

on CO2 emission scenarios [18]. These changes in seawater

chemistry and the subsequent shift in the relative proportion

of species of dissolved inorganic carbon (DIC), together

known as ocean acidification (OA), will have cascading effects

on marine ecosystems [20,21].

Higher ambient CO2 levels act to acidify the blood and tis-

sues of water-breathing marine organisms [22]. Teleost fishes,

however, are assumed to be quite resilient to elevated CO2

because of their ability to regulate acid-base balance by bicar-

bonate accumulation and ion exchange across (primarily) the

gills [23–25]. Sharks and their relatives use a similar mechan-

ism to that of teleost fishes [26]. Yet, it is worth noting that they

are osmoconformers, whereas teleost fishes are osmoregu-

lators. Being an osmoconformer in seawater means that the

blood plasma has roughly the same osmolality as the sea-

water, which largely comes from high concentrations of urea

and trimethylamine N-oxide (TMAO) [27–29].

Until recently, there were no experimental data with which

to assess the possible effects of OA on sharks and their relatives.

Only through ‘Ecological Risk Assessments’ (ERAs) for climate

change was it argued that OA would not directly affect sharks,

although it may indirectly affect them via changes in habitat,

marine community structure and prey availability [11]. The

underlying reasoning behind these conclusions was the fact

that the modern sharks evolved in the Devonian, when atmos-

pheric CO2 levels were many times greater than the current day

[29], and therefore it was expected that they should be highly

tolerant of high CO2 due to their evolutionary history.

However, teleost fishes also evolved in a period of high CO2

and this has not conferred an overarching tolerance to high

CO2 in all extant species [30]. Furthermore, new studies have

revealed empirical evidence that sharks and their relatives

may be more sensitive to OA than previously predicted,

especially during their early life stages (embryos, newborns

and juveniles). Here, we present the first review on the subject

and apply a meta-analysis approach to assess the direction

and magnitude of biological responses of sharks to OA

(i.e. simulated end-of-century elevated CO2 conditions). More

specifically, we use the meta-analysis to test whether OA will

have a negative effect on survival, growth, physiology and be-

haviour in the species investigated to date and how these effects

will interact with environmental warming (methodological

details in electronic supplementary material).
3. Early development
Although all shark species display internal fertilization, there

is variation in the mode of fertilization, ovulation cycle,

gestation period and mating systems (reviewed in [31]).
Also, depending on how long the embryos are retained by

the mothers, shark species can be divided by oviparous

(egg-laying) or viviparous (live-bearing) reproduction.

Oviparous species retain the fertilized eggs for short periods,

after which the eggs are attached to benthic structures until

hatching. To our knowledge, no studies have yet examined

the possible effects of OA on embryonic development in vivi-

parous species, and only three studies to date have evaluated

the possible effects of OA on the embryonic development

of oviparous species—the tropical bamboo (Chiloscyllium
punctatum) and epaulette (Hemiscyllium ocellatum) sharks

and the temperate Port Jackson shark (Heterodontus portusjack-
soni) (table 1). Overall, these studies found no significant

effects of OA on embryo survival and development time

(figure 1). Moreover, specific growth rates, yolk consumption,

tail oscillations and gill movements were not significantly

different in embryos exposed to control conditions when

compared with those reared under elevated CO2 conditions

[32,37,39]. As expected, elevated temperature significantly

increased the rate of embryonic development, but there was

no interaction with elevated CO2 [32,39] (figure 2). It is poss-

ible that oviparous shark species may display adaptive

mechanisms that confer tolerance to elevated CO2 conditions

inside the egg capsules. Nonetheless, it is worth noting that

in another chondrichthyan group (skates), Di Santo [42]

found that CO2-induced acidification exacerbated the effects

of high temperature stress on the embryogenesis in the little

skate (Leucoraja erinacea). Although early development

was not significantly affected by elevated CO2 in the shark-

related studies conducted to date, more studies are necessary

to increase replication, to focus on critical developmental

periods (e.g. the pre-gill formation period is normally

linked to higher mortalities [37]) and to consider oviparous

species that thrive at higher latitudes.
4. Physiology
The physiological effects of simulated end-of-century elev-

ated CO2 conditions have only been evaluated in four

relatively sedentary, benthic species: the temperate lesser-

spotted (Scyliorhinus canicula) catshark [38] and Port Jackson

(H. portusjacksoni) sharks [39,40] and the tropical bamboo

(C. punctatum) [32–34] and epaulette (H. ocellatum) sharks

[35,36] (table 1). Previous studies investigating physiological

processes under elevated CO2 in sharks have been conduc-

ted at very high CO2 levels (.8–10 mm Hg, approximately

10 000–13 000 matm) (e.g. [29]) that are not ecologically rele-

vant to the impacts of near-future ocean acidification.

Consequently, they are not included in this review and

meta-analysis. Although there was no overall effect of OA-

relevant CO2 levels on the survival of recently hatched and

juvenile sharks, some physiological impairments have been

detected (figure 1). For instance, while there were no modifi-

cations to growth in S. canicula, significant changes in resting

metabolic rate, aerobic scope and blood chemistry (increased

HCO�3 and Naþ levels) were detected. Similar acid-base com-

pensation, blood haematology variables (e.g. haematocrit,

haemoglobin concentration, and mean cell haemoglobin con-

centration) and respiratory (resting oxygen consumption

rates, citrate synthase activity and hypoxia tolerance via Pcrit)

responses to elevated CO2 were observed in H. ocellatum [35].
The latter authors suggested that these physiological responses
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were associated with H. ocellatum living in shallow reef and

lagoon habitats that naturally experience variable CO2 levels,

which could confer them a certain degree of tolerance to pro-

jected future CO2 concentrations. Contrary to these two

studies that encompass acclimation periods varying between

30 and 60 days (table 1), other studies performed in recently

hatched juveniles exposed to elevated CO2 during the entire

embryogenesis (more than 200 days of acclimation; table 1)

observed significant changes in Fulton’s condition index [32],

aerobic potential (citrate synthase activity), peroxidative

damage in the brain, cholinergic neurotransmission [33] and

digestive enzyme activities [34], among other physiological

variables. Most of these effects also exhibited significant inter-

actions with elevated temperatures (figure 1). Thus, in addition

to the limited number of studies, the different duration of the

experiments also challenges our ability to make strong infer-

ences on effect size, since studies with shorter acclimation

periods (less than three months; see table 1) have contrasting

effects to studies with much longer acclimation times.

Another key aspect of shark physiology that could alter

blood pCO2 and thus make some species more or less sensi-

tive to elevated water CO2 is the ability to pump water over

their gills. While some sharks use buccal pumping (usually

less active and benthos-associated species), others oxygenate

http://rsbl.royalsocietypublishing.org/
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the gills by opening their mouth while swimming – ram ven-

tilators (more active and pelagic species). All species studied

to date fall within the first category and, therefore, there is a

complete lack of knowledge necessary to predict the effects of

OA on the behavioural and physiological ecology of the

larger and more active sharks, such as those belonging to

the Carcharhinidae (requiem) and Sphyrnidae (hammerhead)

families. In other fast-swimming (non-obligate) ram venti-

lators (e.g. mackerels) it has been shown that as swimming

speed increases blood pCO2 declines in a linear way [43].

Thus, ram-ventilating sharks may be more susceptible to

OA because they have lower internal pCO2 values than

their benthic counterparts. The smaller differential between

ambient and internal pCO2 in ram ventilators could make

them more sensitive to OA because of the larger relative

increase in internal pCO2 when exposed to increasing

ambient CO2 levels [44].
5. Behaviour
Sharks are generally considered to possess superior olfactory

sensitivities when compared to teleost fishes due to sharks’

particularly large olfactory structures, which play a key role

in their capabilities for predator avoidance, prey detection
and navigation [45]. Sharks and their relatives also possess

unique and elaborate (ampullary) electroreceptor systems

that facilitate geomagnetic navigation and detection of

preys’ bioelectric fields [46]. Contrary to the other phenotypic

responses, elevated CO2 has been found to significantly affect

shark behaviour (figure 1). For instance, Pistevos and col-

leagues showed that Port Jackson sharks reared under

simulated end-of-century elevated CO2 conditions (approx.

67 days in mesocosms) took nearly four times longer to

detect their prey than those reared in control conditions

[39]. However, in combination with elevated temperatures,

the amount of time to detect prey was reduced by one

third. This temperature effect was recurrent in other studies

and is highlighted in figure 2. In a subsequent study [40],

the same team revealed that although warming increased

prey location rate in H. portusjacksoni, future CO2 conditions

inhibited the chemical and visual behavioural responses

that allow effective hunting in the test arenas. Similarly,

Dixson et al. [41] found that high CO2-treated smooth dogfish

(Mustelus canis) were less attracted to a water stream contain-

ing a food stimulus and reduced attack behaviour when

compared to their control counterparts. Lesser-spotted

(Scyliorhinus canicula) catsharks exposed to elevated CO2

levels exhibit increased absolute lateralization and signifi-

cantly fewer swimming events [38]. Together, these studies
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demonstrate that exposure to elevated CO2 can significantly

impair critical feeding behaviours and activities in sharks.

On the contrary, however, the behaviour of the benthic

reef-dwelling H. ocellatum was unaffected by the projections

for ocean CO2 by 2100 [36]. Again, the absence of phenotypic

effects in this species was explained by adaptations to the diel

fluctuations in oxygen and CO2 that are found in their

shallow, reef habitat, illustrating that sensitivity to higher

CO2 levels may be habitat specific.

The broadly similar behavioural changes to OA observed

in marine teleosts have been attributed to interference

between acid-base regulation in a high CO2 environment

and the function of the GABA-A receptor, the primary inhibi-

tory neurotransmitter receptor in the vertebrate brain [47].

The GABA-A receptor is an ion-channel with conductance

for Cl2 and HCO�3 and under normal (control) conditions,

ion inflow leads to membrane hyperpolarization and inhib-

ited neural activity. Under elevated CO2, marine teleosts

make regulatory adjustments in blood and tissues that

affect such transmembrane gradients in some neurons [22].

Consequently, GABA-A receptors can become depolarizing

and excitatory, resulting in behavioural impairments

[22,47–49]. The same explanatory mechanism could apply

to sharks, since they possess the same GABA-A neuro-

transmitter receptor [50] and accumulate HCO�3 from the

environment in exchange for Cl2 from the body to buffer

eventual pH disturbance. A pharmacological approach (e.g.

the use a GABA-A receptor antagonist such as gabazine) to

test this hypothesis in sharks has not yet been undertaken

but warrants investigation.
6. Conclusion and future directions
The structure of marine food webs has already been altered due

to dramatic declines in shark populations from overfishing and

habitat deterioration [7,9,10,14]. Until recently, ocean acidifica-

tion was not considered a direct threat to sharks. Recently

available empirical evidence suggests that they may be more sus-

ceptible than previously assumed. Physiological impairments

due to elevated CO2 exposurewere less evident than behavioural

impairments, and revealed greater interspecific variability.

Future studies should choose species with different lifestyles,

from different climate zones and habitats, and/or species with

different niche preferences. Aware that short-term studies do

not consider the potential for adaptation over the time frame

that CO2 levels will rise by the end of the century [51], future

research should also attempt to conduct transgenerational (mul-

tiple generations; namely in oviparous species) approaches.

More empirical data are thus required to directly assess the

risk and vulnerability of sharks to climate change and ocean

acidification, which will assist managers and policy makers to

make informed decisions targeting the most endangered species.
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electronic supplementary material.
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